2021/2022 List of Final Year BE/B.Tech/M.tech/MCA Networking Projects

Problem Statement: Location-based services are quickly becoming immensely popular. In addition to services based on users' current location, many potential services rely on users' location history, or their spatial-temporal provenance. Malicious users may lie about their spatial-temporal provenance without a carefully designed security system for users to prove their past locations. In this paper, we present the Spatial-Temporal provenance Assurance with Mutual Proofs (STAMP) scheme. STAMP is designed for ad-hoc mobile users generating location proofs for each other in a distributed setting. However, it can easily accommodate trusted mobile users and wireless access points. STAMP ensures the integrity and non-transferability of the location proofs and protects users' privacy. A semi-trusted Certification Authority is used to distribute cryptographic keys as well as guard users against collusion by a light-weight entropy-based trust evaluation approach. Our prototype implementation on the Android platform shows that STAMP is low-cost in terms of computational and storage resources. Extensive simulation experiments show that our entropy-based trust model is able to achieve high collusion detection accuracy.

Need assistance?? Call or Whatsapp: 9844628808

Problem Statement: With 20 million installs a day [1], third-party apps are a major reason for the popularity and addictiveness of Facebook. Unfortunately, hackers have realized the potential of using apps for spreading malware and spam. The problem is already significant, as we find that at least 13% of apps in our dataset are malicious. So far, the research community has focused on detecting malicious posts and campaigns. In this paper, we ask the question: Given a Facebook application, can we determine if it is malicious? Our key contribution is in developing FRAppE—Facebook’s Rigorous Application Evaluator—arguably the first tool focused on detecting malicious apps on Facebook. To develop FRAppE, we use information gathered by observing the posting behavior of 111K Facebook apps seen across 2.2 million users on Facebook. First, we identify a set of features that help us distinguishmalicious apps from benign ones. For example, we find that malicious apps often share names with other apps, and they typically request fewer permissions than benign apps. Second, leveraging these distinguishing features, we show that FRAppE can detect malicious apps with 99.5% accuracy, with no false positives and a high true positive rate (95.9%). Finally, we explore the ecosystem of malicious Facebook apps and identify mechanisms that these apps use to propagate.

Need assistance?? Call or Whatsapp: 9844628808

Final Year Projects for the Academic Year 2020-2021. For Project Synopsis Click here or Call 9844628808